skip to main content


Search for: All records

Creators/Authors contains: "Oh, Chung-Sik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Because of its proximity and the large size of its black hole, M 87 is one of the best targets for studying the launching mechanism of active galactic nucleus jets. Currently, magnetic fields are considered to be an essential factor in the launching and accelerating of the jet. However, current observational estimates of the magnetic field strength of the M 87 jet are limited to the innermost part of the jet (≲100 r s ) or to HST-1 (∼10 5   r s ). No attempt has yet been made to measure the magnetic field strength in between. Aims. We aim to infer the magnetic field strength of the M 87 jet out to a distance of several thousand r s by tracking the distance-dependent changes in the synchrotron spectrum of the jet from high-resolution very long baseline interferometry observations. Methods. In order to obtain high-quality spectral index maps, quasi-simultaneous observations at 22 and 43 GHz were conducted using the KVN and VERA Array (KaVA) and the Very Long Baseline Array (VLBA). We compared the spectral index distributions obtained from the observations with a model and placed limits on the magnetic field strengths as a function of distance. Results. The overall spectral morphology is broadly consistent over the course of these observations. The observed synchrotron spectrum rapidly steepens from α 22 − 43 GHz  ∼ −0.7 at ∼2 mas to α 22 − 43 GHz  ∼ −2.5 at ∼6 mas. In the KaVA observations, the spectral index remains unchanged until ∼10 mas, but this trend is unclear in the VLBA observations. A spectral index model in which nonthermal electron injections inside the jet decrease with distance can adequately reproduce the observed trend. This suggests the magnetic field strength of the jet at a distance of 2−10 mas (∼900 r s  − ∼4500 r s in the deprojected distance) has a range of B  = (0.3−1.0 G)( z /2mas) −0.73 . Extrapolating to the Event Horizon Telescope scale yields consistent results, suggesting that the majority of the magnetic flux of the jet near the black hole is preserved out to ∼4500 r s without significant dissipation. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract

    In 2019 September, a sudden flare of the 6.7 GHz methanol maser was observed toward the high-mass young stellar object (HMYSO) G24.33+0.14. This may represent the fourth detection of a transient mass accretion event in an HMYSO after S255IR NIRS3, NGC 6334I-MM1, and G358.93−0.03-MM1. G24.33+0.14 is unique among these sources as it clearly shows a repeating flare with an 8 yr interval. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we observed the millimeter continuum and molecular lines toward G24.33+0.14 in the pre-flare phase in 2016 August (ALMA Cycle 3) and the mid-flare phase in 2019 September (ALMA Cycle 6). We identified three continuum sources in G24.33+0.14, and the brightest source, C1, which is closely associated with the 6.7 GHz maser emission, shows only a marginal increase in flux density with a flux ratio (Cycle 6$/$Cycle 3) of 1.16 ± 0.01, considering an additional absolute flux calibration uncertainty of $10\%$. We identified 26 transitions from 13 molecular species other than methanol, and they exhibit similar levels of flux differences with an average flux ratio of 1.12 ± 0.15. In contrast, eight methanol lines observed in Cycle 6 are brighter than those in Cycle 3 with an average flux ratio of 1.23 ± 0.13, and the higher excitation lines tend to show a larger flux increase. If this systematic increasing trend is real, it would suggest radiative heating close to the central HMYSO due to an accretion event which could expand the size of the emission region and/or change the excitation conditions. Given the low brightness temperatures and small flux changes, most of the methanol emission is likely to be predominantly thermal, except for the 229.759 GHz (8−1–70 E) line known as a class I methanol maser. The flux change in the millimeter continuum of G24.33+0.14 is smaller than in S255IR NIRS3 and NGC 6334I-MM1 but is comparable with that in G358.93−0.03-MM1, suggesting different amounts of accreted mass in these events.

     
    more » « less
  3. Abstract

    Sagittarius A* (Sgr A*), the Galactic Center supermassive black hole (SMBH), is one of the best targets in which to resolve the innermost region of an SMBH with very long baseline interferometry (VLBI). In this study, we have carried out observations toward Sgr A* at 1.349 cm (22.223 GHz) and 6.950 mm (43.135 GHz) with the East Asian VLBI Network, as a part of the multiwavelength campaign of the Event Horizon Telescope (EHT) in 2017 April. To mitigate scattering effects, the physically motivated scattering kernel model from Psaltis et al. (2018) and the scattering parameters from Johnson et al. (2018) have been applied. As a result, a single, symmetric Gaussian model well describes the intrinsic structure of Sgr A* at both wavelengths. From closure amplitudes, the major-axis sizes are ∼704 ± 102μas (axial ratio ∼1.190.19+0.24) and ∼300 ± 25μas (axial ratio ∼1.28 ± 0.2) at 1.349 cm and 6.95 mm, respectively. Together with a quasi-simultaneous observation at 3.5 mm (86 GHz) by Issaoun et al. (2019), we show that the intrinsic size scales with observing wavelength as a power law, with an index ∼1.2 ± 0.2. Our results also provide estimates of the size and compact flux density at 1.3 mm, which can be incorporated into the analysis of the EHT observations. In terms of the origin of radio emission, we have compared the intrinsic structures with the accretion flow scenario, especially the radiatively inefficient accretion flow based on the Keplerian shell model. With this, we show that a nonthermal electron population is necessary to reproduce the source sizes.

     
    more » « less